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Ridley, M. "The Mathematics of Markets", The Economist, 9 October 1993.  

Good review of the use of models in market forcasting.  Mentions methods of May, Takens.  

Wolf, A., J.B. Swift, H.L. Swinney, J.A. Vastano, "Determining Lyapunov exponents from a time series", Physica 16D (1985) 285-317

Provides FORTRAN code for computing Lyapunov exponents using both ODEs of motion and time-series data.  

Wolf, A., "Quantifying chaos with Lyapunov exponents", chapter 13 in "Chaos", ed by A.V. Holden, Princeton U. Press (1986).  

Summarizes Physica D paper, also elaborates on use of code for discrete mappings, such as Henon map.  This would apply to such as quadratic iterator or polynomial models.  

Schaffer, W.M., and M.Kot, "Differential systems in ecology and epidemiology", chapter 8, pp 158-178 in "Chaos", ed by A.V. Holden, Princeton U. Press (1986).  

Discusses chaotic occurences of Lotka-Volterra equations.  Applies Takens embedding method to disease data.  

Neural Networks

Chatfield, C. Neural Networks:  Forecasting breakthrough or passing fad?  Int. J. of Forecasting 9, (1993) 1-3 (North-Holland).  

Critical editorial from statistical point of view.

White, A., Some Asymptotic Results for Learning in Single Hidden-Layer Feedforward Network Models.  J. Am. Statistical Assoc., Dec 1989, v84, n408, p1003-1013.

Chen, S., S.A. Billings, and P.M. Grant, Non-linear system identification using neural networks, Int. J. Control, v51, n6, 1191-1214 (1990). 

Mentions NARMAX models, then moves on to ANNs

Weigend, A.S., B.A. Huberman, D.E. Rumelhart, “Predicting the Future:  A Connectionist Approach”, Int’l J. of Neural Systems, v1, n3, pp193-209 (1990).  

Describe fitting technique using training set to compute parameters of model, validation set to decide when to stop training (to prevent overfitting), and a separate prediction set to test the performance.  Also describe a weight-elimination method to prune the network.  
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